13,890 research outputs found

    Piloting Multimodal Learning Analytics using Mobile Mixed Reality in Health Education

    Get PDF
    © 2019 IEEE. Mobile mixed reality has been shown to increase higher achievement and lower cognitive load within spatial disciplines. However, traditional methods of assessment restrict examiners ability to holistically assess spatial understanding. Multimodal learning analytics seeks to investigate how combinations of data types such as spatial data and traditional assessment can be combined to better understand both the learner and learning environment. This paper explores the pedagogical possibilities of a smartphone enabled mixed reality multimodal learning analytics case study for health education, focused on learning the anatomy of the heart. The context for this study is the first loop of a design based research study exploring the acquisition and retention of knowledge by piloting the proposed system with practicing health experts. Outcomes from the pilot study showed engagement and enthusiasm of the method among the experts, but also demonstrated problems to overcome in the pedagogical method before deployment with learners

    Microstructure and growth of the lenses of schizochroal trilobite eyes

    Get PDF
    Lenses within the schizochroal eyes of phacopine trilobites are made principally of calcite and characterisation of them using light microscopy and high-resolution electron imaging and diffraction has revealed an array of microstructural arrangements that suggest a common original pattern across the suborder. The low convexity lenses of Odontochile hausmanni and Dalmanites sp. contain calcite fibres termed trabeculae. The c axis of trabecular calcite lies parallel to the lens axis, and adjacent trabeculae are distinguished by small differences in their a axis orientations. Despite the common alignment, the boundaries between trabeculae cross-cut the c axis as they fan out towards the lens base. Trabeculae are absent from the lens immediately beneath the visual surface and instead a radial fringe is present and is composed of micrometre-thick sheets of calcite whose c axes are oriented at a low angle to the visual surface. High convexity lenses are more common than those of lower convexity among the species studied, and they have a much thicker radial fringe. Beneath this fringe all of the lens calcite is oriented with its c axis parallel to the lens axis and it lacks trabeculae. We propose that both the high and low convexity lenses formed by rapid growth of calcite from a surface that migrated inwards from the cornea, and they may have had an amorphous calcium carbonate precursor. The trabeculae and radial fringes are unlikely to have had any beneficial effect on the transmission or focusing of light but rather are the outcomes of an elegant solution to the problem of how to construct a biconvex lens from a crystalline solid

    Phosphorylation of Subunit Proteins of Intermediate Filaments from Chicken Muscle and Nonmuscle Cells

    Get PDF
    The phosphorylation of the subunit proteins of intermediate (10-nm) filaments has been investigated in chicken muscle and nonmuscle cells by using a two-dimensional gel electrophoresis system. Desmin, the 50,000-dalton subunit protein of the intermediate filaments of muscle, had previously been shown to exist as two major isoelectric variants--alpha and ß --in smooth, skeletal, and cardiac chicken muscle. Incubation of skeletal and smooth muscle tissue with 32PO4{}3- reveals that the acidic variant, alpha -desmin, and three other desmin variants are phosphorylated in vivo and in vitro. Under the same conditions, minor components of alpha - and ß -tropomyosin from skeletal muscle, but not smooth muscle, are also phosphorylated. Both the phosphorylated desmin variants and the nonphosphorylated ß -desmin variant remain insoluble under conditions that solubilize actin and myosin filaments, but leave Z-discs and intermediate filaments insoluble. Primary cultures of embryonic chicken muscle labeled with 32PO4{}3- possess, in addition to the desmin variants described above, a major nonphosphorylated and multiple phosphorylated variants of the 52,000-dalton, fibroblast-type intermediate filament protein (IFP). Filamentous cytoskeletons, prepared from primary myogenic cultures by Triton X-100 extraction, contain actin and all of the phosphorylated and nonphosphorylated variants of both desmin and the IFP. Similarly, these proteins are the major components of the caps of aggregated 10-nm filaments isolated from the same cell cultures previously exposed to Colcemid. These results demonstrate that a nonphosphorylated and several phosphorylated variants of desmin and IFP are present in assembled structures in muscle and nonmuscle cells

    The morphology of the Milky Way - II. Reconstructing CO maps from disc galaxies with live stellar distributions

    Get PDF
    The arm structure of the Milky Way remains somewhat of an unknown, with observational studies hindered by our location within the Galactic disc. In the work presented here we use smoothed particle hydrodynamics (SPH) and radiative transfer to create synthetic longitude-velocity observations. Our aim is to reverse-engineer a top down map of the Galaxy by comparing synthetic longitude-velocity maps to those observed. We set up a system of N-body particles to represent the disc and bulge, allowing for dynamic creation of spiral features. Interstellar gas, and the molecular content, is evolved alongside the stellar system. A 3D-radiative transfer code is then used to compare the models to observational data. The resulting models display arm features that are a good reproduction of many of the observed emission structures of the Milky Way. These arms however are dynamic and transient, allowing for a wide range of morphologies not possible with standard density wave theory. The best fitting models are a much better match than previous work using fixed potentials. They favour a 4-armed model with a pitch angle of approximately 20 degrees, though with a pattern speed that decreases with increasing Galactic radius. Inner bars are lacking however, which appear required to fully reproduce the central molecular zone.Comment: 16 pages, 15 figures, accepted by MNRA

    Hydrogen as a Source of Flux Noise in SQUIDs

    Full text link
    Superconducting qubits are hampered by flux noise produced by surface spins from a variety of microscopic sources. Recent experiments indicated that hydrogen (H) atoms may be one of those sources. Using density functional theory calculations, we report that H atoms either embedded in, or adsorbed on, an a-Al2O3(0001) surface have sizeable spin moments ranging from 0.81 to 0.87 uB with energy barriers for spin reorientation as low as ~10 mK. Furthermore, H adatoms on the surface attract gas molecules such as O2, producing new spin sources. We propose coating the surface with graphene to eliminate H-induced surface spins and to protect the surface from other adsorbates.Comment: 12 pages, 4 figure

    Plate tectonics: When ancient continents collide

    Get PDF
    The geological record preserves scant evidence for early plate tectonics. Analysis of eclogites — metamorphic rocks formed in subduction zones — in the Trans-Hudson mountain belt suggests modern-style subduction may have operated 1,800 million years ago

    Remotely triggered scaffolds for controlled release of pharmaceuticals

    Get PDF
    Fe3O4-Au hybrid nanoparticles (HNPs) have shown increasing potential for biomedical applications such as image guided stimuli responsive drug delivery. Incorporation of the unique properties of HNPs into thermally responsive scaffolds holds great potential for future biomedical applications. Here we successfully fabricated smart scaffolds based on thermo-responsive poly(N-isopropylacrylamide) (pNiPAM). Nanoparticles providing localized trigger of heating when irradiated with a short laser burst were found to give rise to remote control of bulk polymer shrinkage. Gold-coated iron oxide nanoparticles were synthesized using wet chemical precipitation methods followed by electrochemical coating. After subsequent functionalization of particles with allyl methyl sulfide, mercaptodecane, cysteamine and poly(ethylene glycol) thiol to enhance stability, detailed biological safety was determined using live/dead staining and cell membrane integrity studies through lactate dehydrogenase (LDH) quantification. The PEG coated HNPs did not show significant cytotoxic effect or adverse cellular response on exposure to 7F2 cells (p < 0.05) and were carried forward for scaffold incorporation. The pNiPAM-HNP composite scaffolds were investigated for their potential as thermally triggered systems using a Q-switched Nd:YAG laser. These studies show that incorporation of HNPs resulted in scaffold deformation after very short irradiation times (seconds) due to internal structural heating. Our data highlights the potential of these hybrid-scaffold constructs for exploitation in drug delivery, using methylene blue as a model drug being released during remote structural change of the scaffold
    • 

    corecore